
~ Pergamon Int. J. Multiphase Flow Vol. 20, No. 5, pp. 969-977, 1994 
Elsevier Science Ltd. Printed in Great Britain 

0301-9322(94)E0002-Z 

T H E  I N F L U E N C E  O F  A M E A N  F L U I D  V E L O C I T Y  G R A D I E N T  

O N  T H E  P A R T I C L E - F L U I D  V E L O C I T Y  C O V A R I A N C E  

L. M.  LILJEGREN 

Analytic Sciences Department, Battelle, Pacific Northwest Laboratory,, Richland, WA 99352, U.S.A. 

(Received 3 August 1993; in revised form 27 December 1993) 

Abstract--The effect of a mean fluid velocity gradient on the particle-fluid velocity covariance and 
fluctuating relative velocity for a small solid particle suspended in a turbulent gas is examined using 
Fourier transform techniques. The presence of such a gradient is shown to elevate the covariance above 
the level predicted without it. The variance of the fluctuating relative velocity is not directly affected by 
the presence of a mean velocity gradient. The possible impact on turbulence modulation by particles is 
discussed. 
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1. I N T R O D U C T I O N  

The purpose of this analysis is to demonstrate that the magnitude of the velocity covariance can 
be elevated by the presence of mean velocity gradients in the flow. The variance in the fluctuating 
relative velocity is not directly affected by the presence of a mean velocity gradient. A major goal 
is to illustrate that analyses that neglect the mean velocity gradients may fail to capture an essential 
feature of particle--fluid covariance: the covariance may exceed the variance of the fluctuating fluid 
velocity. This suggests that even when the flow around the particle corresponds to Stokes flow, 
particle-fluid interactions may represent a source term that generates turbulence in the fluid phase. 

Quantitiative solutions for the magnitude of the particle-fluid velocity covariance will differ 
depending on the exact flow field, its turbulence characteristics and even the direction of the 
gravitational vector relative to the flow field. For this reason, an idealized flow field was selected 
to illustrate the effect of mean velocity gradients on the velocity covariance; this makes the analysis 
qualitative in the sense that it does not provide a quantitative prediction of the magnitude of the 
covariance for any particular flow field. Caution should be used when attempting to apply the 
results to predicting the magnitude of the covariance in real flows. 

Although the mechanism is described in a qualitative way, the description is important because 
complete solutions of the particle velocity statistics in a turbulent field require relatively complex 
analyses. They are warranted only when all important mechanisms are recognized and incorporated 
into the solution. Moreover, predicting particle statistics is essential to predicting transport 
properties such as particle dispersion, and trubulence modulation by particles. For example, a large 
fluctuating relative velocity causes a loss of correlation between a particle and the fluid packet in 
which it resides, and is known to have a large impact on dispersion rates in many applications 
(Lumley 1957). Consequently, features that affect this statistic may influence dispersion rates 
significantly. In addition, it has been proposed that the relative magnitude of the fluctuating kinetic 
energies of the fluid and particle phases and the particle-fluid velocity covariance can lead to 
dissipation of turbulent kinetic energy in the fluid phase of particulate flows (Elghobashi & 
Abou-Arab 1983; Besnard & Harlow 1988; Rogers & Eaton 1991). 

It is recognized that other phenomena that are not described in this paper could also affect the 
magnitude of the particle velocity covariance and other velocity moments. However, detailed 
analyses to predict these moments will be useful only after all physical phenomena that contribute 
significantly to their magnitude have been identified. The goal of the analysis illustrates that models 
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based on homogeneous-isotropic turbulence (HIT) fail to account for an effect that can be 
important in some flows. The goal is not to propose a universal model for the particle statistics. 

The organization of this paper is as follows: a qualitative analysis of the effect of the mean 
velocity gradient on the velocity covariance and fluctuating relative velocity is provided in section 
2; this analysis is similar in form to that contained in Liljegren (1993), which dealt with the particle 
velocity variance only. A discussion of the effect of particles on the generation or dissipation of 
turbulence follows in section 3. 

2. QUALITATIVE ANALYSIS OF THE EFFECT OF MEAN 
VELOCITY GRADIENTS ON COVARIANCE 

The motion of a small solid spherical particle suspended in an incompressible, unbounded, 
homogeneous turbulent flow will now be considered. The mean fluid velocity will be assumed to 
be plane parallel in the x (or streamwise) coordinate direction and to vary spatially with constant 
velocity gradient, G(i.e. Ux = Gy, Uy = 0, and 0~ = 0). The fluid turbulence will be assumed to be 
homogeneous and stationary; this is artificial, but no more artificial than the assumption of 
stationary homogeneous, isotropic turbulence. A simplified form of the turbulence spectra will be 
used, and the effect of a mean velocity drift between the particle and fluid will be neglected when 
evaluating the turbulence spectrum. The justification for both these simplifying assumptions is 
provided in Liljegren (1990, 1993). It is sufficient to state here that the assumptions are permissible 
provided that the result obtained here is considered to be qualitative rather than quantitative. 

The equations governing the transverse particle velocity Vy and the streamwise particle velocity 
V~ as seen in a Lagrangian framework following the particle are 

and 

~/'y "q- ~ Vy = flUylx p "Jr- fl Vsx 

[1] 

[2] 

where V~ and Vsy are the x and y components of the terminal settling velocity, fl is the inverse 
particle relaxation time, Yp is the current particle y coordinate and Ux and uy are the local velocity 
fluctuations for the fluid phase. 

When Stokes equations describe settling, these are V~ = Apgx/pfl and Vs,. = Apgx/pfl; for a 
particle with radius a, fl = 9t~/2ppa 2. 

The average location of the particle may be determined by taking the ensemble average of [1] 
and [2]. After the initial transient, the expected value of the particle velocities will become Vy = Vsy t 
and V-~ = f lV~y- GV~x; the expected location of the particle will be Xp = 0 and Yp = V~,t. 
The equations governing the transverse particle velocity fluctuations Vy and streamwise particle 
velocity fluctuation Vx may be obtained by subtracting the ensemble average contributions to [1] 
and [2]. This results in 

l)x + flvx = fl(Gyp + Ux)lxp [31 

and 

f~y + flUy = fluylx p [4] 

The transport equations [3] and [4] shown above are somewhat inconvenient for the purpose of 
this analysis. This is primarily because [3] and [4] describe the particle velocity in a Lagrangian 
framework, and [3] is not statistically stationary. This difficulty can be solved by defining a new 
velocity: 

wx = vx - Ux (yp) = vx - Gyp [5] 

The quantity Wx describes the difference between the velocity of a particle and the mean velocity 
of the fluid at the particle's current position. The quantity, Awx = wx - ux describes the instan- 
taneous relative velocity between a particle and the packet of fluid that contains that particle. 
Consequently, features such as the particle Reynolds number, and instantaneous interfacial force 
between phases can be described more easily using wx than vx. In addition, wx is the quantity 
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measured in experiments including those by Soo et al. (1960), Carlson & Peskin (1975), Steimke 
& Dukler (1983), Tsuji & Morikawa (1982), Rogers & Eaton (1990) and Liijegren (1990). 

Recognizing that dyp/dt  = vy and using [5] and [3] results in 

Wx +/3wx = - Gv~ +/3u~ [6] 

Equations [4] and [6] have been analyzed (Liljegren 1990, 1993) to determine the effect of  the mean 
velocity gradient on the particle velocity variances vyvy and w~w~ of particles. Knowing that, it is 
possible to determine the magnitude of the velocity covariance by first defining a "fluctuating 
relative" velocity as 

Awx = w~ - ux and Avy = Vy - uy [7] 

and then determining the magnitude of the covariance algebraically using 

2UyVy = UyU~, + DyVy -- AVy Avy [8] 

and 

2UxWx = UxUx + WxW~ - ~ [9] 

The equations governing the two components of the fluctuating relative velocity are 

A~, + fl Av,  = fly,:,, [1 O] 

and 

A~,x + ~ Awx = {-Gv~ + t~ },~. [111 

Let the Fourier transform of a velocity I?~ and its inverse be defined: 

~'~(co) = ~ e-~'V~(t) dt and V~(t) = ei~'g(co) dco [12] 

The spectra of the two components of the relative velocity defined as the Fourier transform of the 
respective velocity autocorrelations, are then 

(,O2 
SA~ Ao (co) = ~ S ~ , , ,  (co) [131 

,, / J + c o  .- 

and 

co2 icoG G ~ 
SA,,xA,,., = ~ S ...... + f12 + co---"---"-5 (Su.:,, - Su~v,. ) + ~ S~,.,,. [14] 

where Srr denotes a component of a velocity spectrum tensor; the particular component is described 
by the form of the subscripts. 

The velocity variance can be determined by integrating the spectra, resulting in 

and 

where 

= I4y [15] 

ri o (co/~)~ 
I,~ = 2 I + (co/~)~ S~,,~,, (co) dco 

fo ~ (col~)2 I,x = 2 1 + (co/~)2 Su,u, (co) dco 

G I~x=--2-~f:{'l(co/fl)+-~fl)2j]f2 Re (S ..... . .  (co)) dco 

[16] 

[17] 

[181 

[191 
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and 

I3x = 2 ~7 1 + (~/fl)2 S,.,.,,. (co) de) [20] 

Rigorous evaluation of [17] and [20] requires specification of the fluid velocity spectrum as 
sampled along the particle path. Because the form of the spectra depends on specific flow features, 
it is difficult to obtain a general result that describes the particle motion for all flows. Moreover, 
because the particle path may only be described in a stochastic sense and is itself a function of  the 
random particle position, the problem is inherently non-linear (Corrsin & Lumley 1956; Lumley 
1957). Methods to account for the non-linearity have been described by Reeks (1977) and Nir & 
Pismen (1979). Although the non-linearity is of  great importance when attempting to obtain 
quantitative results, it will be ignored here because it does not affect the major goal of the analysis, 
which is to show that the accounting for the mean velocity gradients can be essential to predicting 
particle statistics. In some cases, accounting for the velocity gradients will be at least as important 
as accounting for the non-linearity inherent to the problem. 

When the particle Stokes number is small, the spectrum seen along the path of an individual 
particle is approximately equal to the Lagrangian fluid velocity spectrum. The exact form of this 
spectrum in a region with mean velocity gradients is not completely understood. So, for the 
purposes of this analysis, a spectral form recommended for homogeneous isotropic turbulence by 
Tennekes & Lumley (1972) will be used. 

The diagonal components are assumed to be of the form 

where 

and 

and 

S ...... = Su,.,, = uL Xii/3 = u2x/4e)eXii 

37~ 
Xii(e)) = re-' for le)L/ul < - -  

4 

37t 
~ii((J)) = ~--I((.Oe/(.L))2 for ~-<  le)L/ul < oo 

[21] 

and 

} ~ =  I4~ + Isx + I3x = UxU.~ + o ( ~  2) [24] 

37[ 
e)e = ~-  u/L 

L is the Lagrangian integral scale of  the turbulence, and u is the characteristic fluid velocity 
fluctuation. When the turbulence is isotropic, the following relation holds: 

u 2 = ux Ux = u e uy [22] 

Although the spectrum is known to be anisotropic in flows with mean velocity gradients, the 
spectrum described above is isotropic. The consequence of this assumption will be discussed at the 
end of  this section. A more detailed description of the spectrum and the uncertainties associated 
with its use is provided in the author's previous analysis (Liljegren 1990, 1993). 

In Liljegren (1990 and 1993) the leading-order contributions from the mean velocity gradient to 
the velocity variances were shown to be O(ot), we may determine the effect of the mean velocity 
gradients on the covariance to consistent order by evaluating the terms that contribute to the 
variance to O(ot); higher order terms O(ct 2) may be ignored. The terms I3y, I3x and I5.~ are O(~t 2) 
and can be neglected to leading order; only I4x need be evaluated. For the assumed spectral form, 
the variances describing the fluctuating relative velocities are then 

-I t = I4y = UyUy - - ~ +  O((~ 2) [231 
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The variances described in [23] and [24] appear in this analysis as intermediate quantities required 
to obtain the velocity covariances. However, the quantities are important themselves because they 
describe the rate at which the particle path deviates from the path of the packet of fluid that 
contains it. This deviation causes a loss of correlation between the motion of a particle and that of 
the fluid packet. As such, they provide information regarding the adequacy of using a Lagrangian 
spectrum to describe the fluid velocity as seen along the random path of a neutrally bouyant 
particle. Examination of [23] and [24] indicates two things. With or without a mean velocity 
gradient, the variance of the fluctuating relative velocity grows with particle Stokes number ,. 
Consequently, linear analyses are valid for small values of the Stokes number only. In addition, the 
mean velocity gradient does not affect the fluctuating relative velocity variance to leading order in ,. 

In addition, the magnitude of the relative velocity can be important in assessing the accuracy 
of analyses like this one when used to predict the velocity statistics of particles that obey other 
dynamic equations. The particle dynamic equations described here in [1] and [2] are exact when 
the Reynolds number based on the particle velocity and radius are much less than 1. When the 
Reynolds number is small, the drag term is non-linear in the relative velocity. Lumley (1978) 
proposed that linearized equations similar to [1] and [2] may be used provided the two Reynolds 
numbers based on either the mean relative velocity or the variance in fluctuating relative velocity 
are small. Thus [23] and [24] also provide a measure of the degree to which dynamic equations such 
as [1] and [2] describe particle motions. 

When the particle Stokes n u m b e r ,  = Tpo~e is small, the leading order contributions for the 
velocity variance were shown to be (Liljegren 1990, 1993) 

I t VyVy = UyUy 1 - ,  ~ + O(~ 2) [251 

and 

To leading order, the fluctuating velocity is not affected by the existence of the mean velocity 
gradient. Using [8], [9], [23], [24], and the previously obtained [25] and [26], the two components 
of the fluid velocity covariance become 

uxwx=u~ux{ l+'(]G~ur[k~euxux 4)  +O( '2 )}  [27] 

and 

UyVy=UyUy{l- ~ 4 +  O(~:)} [28] 

Equations [23], [24], [27] and [28] are the principal new results contained in this paper. Along with 
[25] and [26] they describe all relative velocity variances, fluid-particle velocity covariances and 
particle velocity variances. Some important features of the relative velocity variance and the 
fluid-particle velocity covariances are discussed in section 3. 

As noted, the fluid turbulence spectrum in a flow with mean velocity gradients will be anisotropic. 
Moreover, elevation of the particle--fluid velocity covariance will tend to accentuate the anisotropy 
of the turbulence. This has two major consequences for the problem discussed here. First, the ratio 
UyUy/U-~ ~ 1. Using the actual velocity variances in [23]-[28] rather than 1/3 uiui accounts for any 
possible differential distribution of energy. Second, the functional form of the velocity spectrum 
will differ in the two directions. In the flow described here, production of turbulent kinetic energy 
is expected to contribute to the streamwise, or x, component for the turbulent kinetic energy and 
to contribute preferentially at the large scales. Energy would be more evenly distributed at small 
scales. Any differences in the functional form for the velocity spectrum affect the coefficient of ~/4 
appearing in the four equations. Because particles are better able to respond to large scale 
fluctuations, the particular difference in the spectrum described here would cause the coefficient in 
the equations describing streamwise components to be smaller than those appearing in the 
equations describing transverse, or y, components. 
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This means that the equations can be written more generally as 

= + 

v,.v,. = u ; .uy { l  - -  C ,  ot + 0(~2)} 

UyVy = UyUy{1 -- Cl~x + 0(~2)} 

= ux.x{c2  + 

wxwx= .xUx{t + ,(2 12U2Uul C2)+ 0(~x2)} 

and 

u wx__.ux{l + 4,o.u.. 
\ 03eUx Ux 

Both C, and (72 will be O(1) in magnitude and Ct > C2. 

[291 

[301 

[311 

[321 

[33] 

[341 

3. ASSESSMENT OF THE POSSIBILITY OF TURBULENCE GENERATION 

Methods to predict the effect of particles on the turbulence are not well devleoped. However, 
it has been proposed that some qualitative features may be determined by deriving approximate 
equations for the transport of fluctuating kinetic energy using the following method. First, 
assume that a set of transport equations for the fluid and particle momentum describes the 
motion of interpenetrating continua. Then, decompose the velocity, volume fraction and 
pressure into mean and fluctuating components. Perform the scalar product between the 
momentum equation and a corresponding velocity fluctuation, and finally taking the ensemble 
average. 

The manipulation described is not rigorous, primarily because a particulate mixture is not an 
interpenetrating medium. At best, the effect of turbulence structures that are smaller than the 
volume required to average out phase discontinuities cannot be captured in this way (Besnard & 
Harlow 1988). Consequently, it is likely that some terms describing transport of turbulent kinetic 
energy will not be captured. For this reason, the author does not believe that great confidence 
may be placed on models derived in this way. Nevertheless, it seems likely that some of the terms 
describing turbulence modulation by particles can be captured in this way, and the procedure 
appears to capture the physical mechanism describing transfer of turbulent kinetic energy between 
phases and dissipation of trubulent kinetic energy as a result of particle-fluid interactions. This 
procedure will be applied below; for simplicity, the volume fraction will be assumed constant. 

Numerous transport equations for the particle and fluid phases of a particulate mixture have 
been proposed. Differences appear in the form of the pressure terms, added mass coefficients and 
other terms. Despite these differences, many of the forms are equally useful for the purpose of 
illustrating the effect of the covariance and fluctuating relative velocity on turbulence modulation 
by particles, which is most strongly affected by the appearance of an interfacial drag term in the 
averaged equations. If the following general transport equations for fluid and particle momentum 
are accepted as correct: 

Opp Op V i 0 OP p 
v.~j [351 

dpfq'rU,o, + O---(Prq~rU'Uj) = PPq~Pfl (V~- V') + Of~-~x~ + lar-~xj~,-~xj +-~x~) ~ + [36] 

where Or and Op are the fluid and particle volume fractions and PP and pr are pressure in the fluid 
and particle phases, respectively. 
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Then the transport equation for fluctuating kinetic energy of  both phases obtained using the 
procedure outlined above would be 

1 Dppq)pViV i _t_~__~_ c~ 
2 Dt c3xj (Pp~p~V,)  = - p p J p p f l ~ - ~ p - ~ x p P U ,  [371 

production dissipation and transfer pressure gradient work 

1 Dpr ~r~iu~ 
2 Dt  + u~J (Pf ~bf u,-~j Ui) = pp~pflUi(Vi - u i ) -  2vsusi j 

production dissipation and transfer dissipation 

[38] 

pressure gradient diffusion transport by 
work viscous stresses 

where sij = c~ui/dxj and v represents the particle velocity in an Eularian framework. 
According to this formulation, the total effect of the particles on the transport of  fluctuating 

kinetic energy for the mixture can be obtained by adding the two terms labeled "dissipation and 
transfer"; the sum is defined as - - E p T = - - p p ~ b p f l ~ .  This term has an obvious physical 
interpretation. It describes irreversibilities associated with energy transfer between phases; as such 
it is always negative. In terms of the variables used in the analysis of particle moments contained 
in section 2 this total dissipation is 

--£pT = -- ppt~pfl(~-~-~-~x d- ~ -t- ~--~-z~-) [39] 

It is possible to extend the analysis described in section 2 to include the z component, using a 
method similar to that shown in section 2. Substituting [23], and [24] the overall effect of particles 
on the turbulence transport then becomes 

¢t7~ - -  
--£pT = - - p p t ~ p f l  ~ (UxUx "1- UyUy "l- UzUz) [40] 

The mean velocity gradient, G, does not appear in [40]. This indicates that the existence of a mean 
velocity gradient does not affect the dissipation of  turbulent kinetic energy, at least when the 
particles contained in the mixture are small. 

However, the effect on the individual phases is more complicated. In the fluid equations, the effect 
of the particles appears through %r = Pp ~pflUi(Vi- ui). Analyses based on stationary homogeneous 
isotropic turbulence (HIT) indicate that u~v~ ,~ u~u~. Consequently, this term would always be 
negative in these flows, and particle-fluid interactions would act as a turbulence "sink" in the 
equation describing transport of turbulent kinetic energy for the fluid phase. However, in the 
presence of  a velocity gradient, this term may change sign and act as a "source" for turbulence 
in the fluid phase. 

The role of the particles can be explained as follows. In the presence of a velocity gradient, energy 
is exchanged between the mean and fluctuating fields of both phases through the action of the 
Reynolds stresses. So fluctuating kinetic energy is created in both phases. Ultimately, all fluctuating 
kinetic energy is dissipated through two mechanisms. The first is viscous dissipation at small scales 
which appear to occur only in the fluid phase, and also occurs in single-phase flow. The second 
mechanism is irreversible losses when work is performed at the particle fluid interfaces; the 
magnitude of this loss is described by --%T [39]. 

Although the overall action of  the particle-fluid interaction is dissipative, the effect of 
particle-fluid interactions can be to act as a source of turbulent kinetic energy in the fluid phase. 
According to [38], this occurs when the fluid-particle velocity covariance is greater than the fluid 
velocity variance. Physical arguments would indicate that it must occur whenever fluctuating 
kinetic energy cannot be dissipated as rapidly as it is generated in the particulate phase; when this 
occurs some of the fluctuating kinetic energy created in the particle phase must be transferred to 
the fluid phase where it may be dissipated to heat through viscous action. It appears that this can 
occur in the presence of  a mean velocity gradient. 
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4. CONCLUSION 

Analysis of the effect of a mean velocity gradient on the particle-fluid velocity covariance 
suggests that particle--fluid interactions can act as a source for turbulence in the fluid phase. This 
behavior is qualitatively different from that expected in their absence. The results of this analysis 
suggest that models that are used to predict the effect of particles on fluid turbulence should 
generally account for the presence of mean velocity gradients. Failure to capture the effect of mean 
velocity gradients will, at a minimum, overpredict the apparent dissipation of turbulent kinetic 
energy in the fluid phase. It will also fail to detect regions in which turbulent kinetic energy is 
transferred from the particle to the fluid phase as a result of particle-fluid interactions; this transfer 
causes the term describing the effect of interactions between the fluctuating velocities in both phases 
to appear as a source term of turbulent kinetic energy in the fluid phase. 

It is the author's opinion that methods to capture the effect of the mean velocity gradient on 
the magnitude of the fluid-particle velocity covariance and the related particle velocity variance 
can be developed within any general framework for turbulence modeling of particulate flows, 
ranging from semi-Lagrangian methods like those of Migdal & Acosta (1967), or Oesterle & 
Petitjean (1993) to fully Eulerian methods that extend the work of Elghobashi & Abou-Arab (1983), 
or Kataoka & Serizawa (1989). However, the author cautions against using [27] and [29] derived 
here as algebraic closures for the covariance in any proposed turbulence models. This is because 
features like boundaries, second derivatives in the mean velocity and other complications that were 
ignored above, are likely to affect the magnitude of the covariance in many real flows. 
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